TRAVAUX PRATIQUES DE

DIMENSIONNEMENT DES STRUCTURES

Utilisation du logiciel de calculs par éléments finis « Autodesk Simulation Mechanical »

TP n° 3 : Concentration de contraintes

Concentration de contraintes

Dans ce 3^{ème} TP, l'étude portera sur des éprouvettes trouées.

L'objectif est :

- d'analyser l'influence du type de maillage et de la densité de maillage (maillage grossier, moyen et fin) sur les résultats
- de déterminer le coefficient de concentration de contraintes dû à la présence d'un trou dans un barreau en traction

Influence de la densité de maillage

Le but de cette 1^{ère} partie est de réaliser une analyse des contraintes sur un problème classique en utilisant différentes densités de maillage. Plusieurs cas seront étudiés, d'un maillage grossier à un maillage fin, avec 50, 200, 400, 800, 1600 et 3200 éléments.

La procédure est identique aux précédentes. Voici les étapes principales :

- Tracé du contour de l'éprouvette (Détails page suivante)
- Enregistrer le fichier sous « Tp31 »
- Maillage de l'éprouvette (Détails page suivante)
- Encastrement sur le segment y=0 et pression sur le segment y=L (Détails page suivante)
- Propriétés de l'éprouvette (Elément 2D, épaisseur de 0,1 m, Matériau « Stainless AISI 302
 Cold-Rolled »)

Dessin des lignes de construction de l'éprouvette

"Plans" "Plane 2 < YZ (+X) >"	Dans la fenêtre « Arborescence » à la rubrique « Plans », faire un click droit sur « Plane 2 < YZ (+X) » et sélectionner
"Esquisse"	« Esquisse ».
"Dessiner: Rectangle"	Construire le rectangle défini par les deux sommets de la diagonale A et B (« Utiliser en tant que construction »
"Utiliser en tant que	activé).
construction" activé	A(0; 0; 0) et B(0; 0,4; 0,15)
"Dessiner/Cercle : Centre et Rayon"	Créer un cercle de centre O ₁ (0 ; 0,2 ; 0,15) passant par (0 ;0,245 ; 0,15)
"Utiliser en tant que construction" activé	Créer un cercle de centre $O_2(0; 0,2; 0)$ passant par (0;0,245; 0)
"Afficher : Inclure"	

Construction finale de l'éprouvette

Les instructions suivantes permettent de retirer la matière contenue à la fois dans le rectangle et dans les deux cercles.

"Sélection/Sélectionner/	Cette sélection permet de sélectionner les lignes de		
Objets de construction"	construction		
"Dessiner" "Couper"	 Dans « Dessiner », sélectionner « Couper ». Les opérations suivantes sont à réaliser sur le cercle de centre O1 puis sur le cercle de centre O2: sélectionner la ligne horizontale (devient jaune) sélectionner le cercle puis cliquer sur la partie extérieure du cercle sélectionner le demi-cercle sélectionner la ligne horizontale puis cliquer sur la partie de la ligne qui est à l'intérieur du demi-cercle. 		

Fichier: Enregistrer	Enregistrer sous « Tp31 ».
-------------------------	----------------------------

Maillage

"1 < YZ (+X) >"	Sélectionner dans « Composant 1 » « 1 <yz (+x)=""> ».</yz>
"Générer un maillage 2D"	Par un click droit, sélectionner « Générer un maillage 2D ».
"50"	Taper 50 dans « Densité de la maille » puis « Appliquer ».

Définition des conditions aux limites

"Sélection/Sélectionner/ Surface"	Cette sélection permet de sélectionner une surface de la pièce.
"Ajouter : Pression/Traction de la surface " "Magnitude : -10E7"	Sélectionner la surface à droite à $y = 0,4$ Ajouter une pression de magnitude -10E7 .
"Ajouter/Contrainte générale/Fixe"	Sélectionner la surface à gauche à y = 0 Ajouter un encastrement.

Questions

- Pour les six configurations du maillage avec des éléments quadrilatères (50, 200, 400, 800, 1600 et 3200 éléments) :
 - relever la contrainte maximale $\sigma_{_{yy}}^{^{\mathrm{max}}}$
 - comparer avec la valeur théorique de référence $\sigma_{_{VV}}^{_{max}} = 355 \text{ MPa}_{.}$
 - Commenter la répartition des contraintes
- 2- Même question en utilisant des éléments triangulaires
- 3- Conclure, à partir d'une synthèse de tous les résultats dans un seul et unique tableau.

<u>Aide :</u>

Pour modifier la densité du maillage, il suffit :

- de retourner dans « Editeur MEF » en cliquant sur l'onglet correspondant
- de faire un click droit sur « Maillage 2D 1 » dans « Maillage »
- de sélectionner « Modifier » et de changer la valeur de la densité
- d'appliquer
- et de relancer l'analyse

Etude du barreau

On considère un barreau de section rectangulaire et soumis à une charge horizontale ponctuelle d'intensité F=10000 newtons appliquée en ses deux extrémités. L'éprouvette est en acier de module d'Young E=210 000 N/mm² et de coefficient de Poisson v=0.28.

- Dessiner le contour du barreau (Rectangle défini par les points (0;0;0) et (0;0,5;0,05))
- Appliquer le maillage avec des éléments quadrilatères et une densité de maillage de 500
- Appliquer le chargement aux points (0 ;0 ;0,025) et (0 ;0,5 ;0,025)
- Bloquer la translation Tz et la rotation Rx en ces 2 points
- Relever la contrainte au centre du barreau au point (0;0,25;0,025)
- Commenter la répartition des contraintes

Figure 8 : Contraintes de Von-Mises dans le barreau

Etude du barreau troué

On considère le même barreau mais troué en son centre. Le cercle de rayon R est centré au point (0 ; 0,25 ; 0,025). L'objectif est de déterminer le rapport K entre la contrainte réelle maximale σ_{max} au bord du trou et la contrainte nominale σ_{nom} sans trou.

- La contrainte réelle σ_{max} est la valeur maximale de la contrainte obtenue sur le barreau avec le défaut géométrique (au bord du trou)
- La contrainte nominale σ_{nom} est la contrainte calculée à partir d'une étude de RdM sur le barreau sans trou.

- Dessiner le contour du barreau (Rectangle défini par les points (0 ; 0 ; 0) et (0 ; 0,5 ; 0,05))
- Dessiner le cercle de centre (0 ; 0,25 ; 0,025) et de rayon R=15 mm (Attributs : Comp 1)
- Appliquer le maillage : éléments quadrilatères, densité de maillage de 500, angle de 10°
- Appliquer le chargement aux points (0; 0; 0,025) et (0; 0.5; 0,025)
- Bloquer la translation Tz et la rotation Rx en ces 2 points
- Pour l'affichage des résultats, utiliser un nombre de couleur de 12
- Relever la contrainte maximale σ_{\max} au bord du trou.

Contrainte Von Mises N((m^2)			
3,416774e+008 3,08372e+008 2,250071e+008 2,41762e+008 2,08465e+008 1,751671e+008 1,418465e+008 1,085414e+008 7,223624e+007 4,19311e+007 8626959			
Cas de charge: 1 de 1 Description de cas de charge: Load Case Descriptio	n	Z	
Valeur maximale: 3,41677e+008 N/(m*2)		•	
Valeur minimale: 8,62596e+006 N/(m*2) 0,000	0,089 m 0,179	0,268	
1 < Scénario de conception 1 >			

Figure 9 : Contraintes de Von-Mises dans le barreau troué

Questions

1- Montrer que le coefficient K ne dépend pas de la valeur de la charge appliquée (Prendre une autre valeur de la charge, 5000 N par exemple)

2- Tracer la courbe K = f(2R/b), le rapport 2R/b variant de 0,3 à 0,7